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Abstract. Multi-modal deep learning has achieved great success in many ap-
plications. Previous works are mostly based on auto-encoder networks or paired
networks, however, these methods generally consider the consensus principle on
the output layers and always need deep structures. In this paper, we propose a
novel Cascade Deep Multi-Modal network structure (CDMM), which generates
deep multi-modal networks with a cascade structure by maximizing the correla-
tions between each hidden homogeneous layers. In CDMM, we simultaneously
train two nonlinear mappings layer by layer, and the consistency between differ-
ent modal output features is considered in each homogeneous layer, besides, the
representation learning ability can be forward enhanced by considering the raw
feature representation simultaneously for each layer. Finally, experiments on 5
real-world datasets validate the effectiveness of our method.
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Introduction

In most real-world data analysis problems as image processing, medical detection and
social computing, complicated objects can always be described from diverse domains
and are naturally with multi-modal feature presentations. However, the representations
of various modalities are quite different from each other and it is a challenge to fuse the
multiple modalities directly with large discrepancy. Recently, substantial efforts have
been dedicated to consider the modal consensus problem, which generally maximizes
the correlation between different modalities in the projected subspace. Modern multi-
modal subspace learning methods mainly derived from the CCA method [7]. However,
these methods are most linear ones, though they can be extended to non-linear mod-
els with kernel tricks as KCCA [1], it is difficult to design a suitable kernel and also
inefficient to deal with the large datasets.

Recently, multi-modal methods based on deep networks have attracted more atten-
tion, which more easily to process large amounts of data[12, 9]. Different from KCCA,
these methods generally maximize the correlation between the output features of mul-
tiple distinct modal networks for learning more discriminative feature representations.
Though deep networks are powerful, it is notable that the structures of deep CCA are
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very complicated and always require deeper structure for better representation learning,
while leaving the consensus principle of the homogeneous hidden layers among differ-
ent modal networks without considering during the training phase. Thus, in recent, [19]
proposed the gcForest, which generates a deep forest ensemble method with a cascade
structure, it is notable that the number of cascade levels can be adaptively determined
such that the model complexity can be automatically set.

Inspired by this fact, we therefore propose the CDMM (Cascade Deep Multi-Modal
networks) approach to learn multiple maximal correlated deep networks simultane-
ously, which trains the multiple deep networks with a cascade structure by maximizing
the correlation between each homogeneous layers of different modal networks. Specif-
ically, we train multiple deep nonlinear networks layer by layer, and consider the con-
sistency between each homogeneous layer of different modal networks carefully, and
then output the processing result to the next level without retraining anymore. As a con-
sequence, the number of layers can be adaptively determined. On the other hand, we
forward enhance the network representational learning ability by concatenating the raw
input with the output of each hidden layer.

Related Work

The exploitation of multiple modal subspace learning has attracted many attentions re-
cently. Most proposed methods are mainly derived from the CCA methods, which are
devoted to fully utilize the relationships between multiple modalities, and leveraging the
consistency among different modalities is one of the significant principles. CCA style
subspace learning approaches have been well developed in decades [15, 3, 14]. How-
ever, these methods are most linear ones. Thus, Kernel canonical correlation analysis
(KCCA) [1] extended the CCA to nonlinear projections. Nevertheless, these methods
are limited by the fixed kernel and are difficult to handle a large amount of data.

Therefore, considering deep networks can learn nonlinear feature representations
without suffering from the drawbacks of nonparametric models, and have achieved
great success in many scenarios [20, 10, 16]. Recently [2] used the DCCA to learn com-
plex nonlinear transformation for two modalities; [17] proposed the DCCAE, which
combined the DCCA and deep auto-encoder in one unified framework for more dis-
criminative feature representation. All these methods employ the deep neural network
to maximize the correlation on the output feature representation of multiple distinct
modalities. Nevertheless, they only expect the output feature representations of differ-
ent distinct modal networks to be maximally correlated, which need deeper networks
for learning better discriminative features, while ignoring the correlations among the
homogeneous hidden layers.

To the best of our knowledge, previous linear or kernelized multi-modal meth-
ods, which improved the performance by considering the consistency among different
modalities on the projected subspace, are difficult to handle a large amount of data and
are restricted to the reproducing kernel Hilbert space. Though deep CCA based methods
solved these problem, yet they only consider the consensus principle of the output fea-
ture representation. In this paper, we propose the CDMM (Cascade Deep Multi-Modal
networks), which trains multiple separate deep network with the cascade structure by
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considering the consistency between homogeneous hidden layers of different modalities
layer by layer, moreover, the representation learning ability can be forward enhanced
gradually by considering the raw input for each layer. Consequently, we can obtain a
competitive performance with a controlled number of hidden layers.

Proposed Method

Suppose we haveN instances, denoted byD = {x1,x2, · · · ,xi, · · · ,xN}, where each
instance xi = [xi1 , xi2 , · · · , xid ] ∈ Rd. Meanwhile, in multi-modal learning, instance
space can be denoted as M parts without overlap, v = {v1, v2, · · · , vM}, where xvi ∈
Rdi is raw features from the i-th modality, d = d1 + d2 + · · ·+ dM . Without any loss
of generalities, each instance xi can be denoted as (xv1

i ,x
v2
i , · · · ,x

vM
i ).

Deep canonical correlation analysis (DCCA)

Recently, several works are proposed to combine the deep neural network and CCA
for better feature representation learning, [2] proposed the deep canonical correlation
analysis (DCCA) approach. In DCCA, two deep neural networks fv1 and fv2 are used
to extract nonlinear features for different modalities, and then maximize the canoni-
cal correlation between the extracted features fv1(X

v1) and fv2(X
v2), which can be

represented as:

max
θv1 ,θv2 ,U,V

1

N
tr(U>fv1(X

v1)fv2(X
v2)>V )

s.t. U>(
1

N
fv1(X

v1)fv1(X
v1)> + rv1I)U = I,

V >(
1

N
fv2(X

v2)fv2(X
v2)> + rv2I)V = I,

(1)

where θv1 and θv2 are the weight parameters of networks fv1 and fv2 , U and V are the
CCA directions which project the output features to the same subspace. (rv1 , rv2) > 0
are regularization parameters for same covariance estimation [4], the U>fv1(X

v1) and
fv2(X

v2)>V are the final projection mapping for testing. Nevertheless, DCCA method
and the extensions most concentrate on the correlation between the output feature rep-
resentation, while ignoring the correlation between homogeneous hidden layers.

Cascade Deep Multi-Modal networks (CDMM)

In this section, we mainly introduce the concrete steps on learning the discriminative
deep multi-modal feature representations with a novel cascade structure, which takes
the consensus principle into consideration for each homogeneous hidden layer. We si-
multaneous train paired deep networks layer by layer, and maximize the consistency
between the homogeneous output feature representation of the hidden layers, conse-
quently, we can learn more discriminative feature representations for different modal-
ities, meanwhile, the layers of different modal networks can be adaptively induced by
the performance measure, rather than designed in advance manually. On the other hand,
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the estimated output of hidden layer forms a feature representation vector, which is then
concatenated with the raw feature vector to be the input of the next cascade layer for
more robust feature representation.
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Fig. 1: The overall flowchart. CDMM consists two ho-
mogeneous deep networks, which trains with cascade
structure different from previous DNN-based method.
During the training phase, CDMM maximally corre-
lates each homogeneous hidden layer, besides, the raw
features are concatenated with each hidden layer output
as next input for more robust representations.

Representation learning in deep
neural networks mostly relies on
the layer by layer processing of
the raw features. Inspired by this
recognition, [19] proposed the gc-
Forest, which employs a cascade
structure, where each layer of the
cascade structure receives feature
information processed by its pre-
ceding level, and output its pro-
cessing result to the next level.
Thus, we propose a novel deep
multi-modal networks with the
cascade structure as shown in
Fig. 1. Specifically, CDMM can be
with different deep structure, and
for simplicity, we use fully con-
nection matrix for each layer as
the DNN-based multi-modal rep-
resentation learning models as [2],
which can be further implemented
to convolution structure as CNN-
based model. Then, in order to

maximize the correlation of each homogeneous layer of different modalities, we con-
sider the hidden layer output (shown in yellow shadows) of each modal networks as the
fv1(X

v1) and fv2(X
v2) in Eq. 1, and optimize the parameters of current hidden layers

as the DCCA.

It is notable that the objective couples all training samples through the whitening
constraints, so stochastic gradient descent (SGD) cannot be applied in a standard way,
yet it has been observed by [2] that DCCA can still be optimized efficiently as long as
the gradient is estimated using a sufficiently large minibatch. Intuitively, this approach
works due to a large minibatch contains enough information for estimating the covari-
ances. Then, the outputs of the estimated hidden layers form a feature representation,
considering the representations of the shallow layers of the deep network structure are
usually weak features, the hidden layer output is then concatenated with the raw feature
vector to be input to the next level of cascade as shown in Fig. 1, i.e., the dimension
of the hidden layer output is 1024, and the raw feature is 798 dimensionality, thus, the
next level of cascade will receive 1822 (= 1024+798) augmented features. It is notable
that the transformed feature vectors, augmented with the raw feature representations,
will then be used to train the next grade of cascade multi-modal networks respectively,
and the parameters of preceding hidden layers remain unchanged.
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Table 1: The correlation of CDMM with compared methods. The significant best classification
performance on each dataset is bolded.

MNIST AVLETTER XRBM WIKI FLICKR8K

CCA 3.59 6.55 15.97 5.23 4.87
KCCA 1.29 2.37 35.51 7.25 6.80
DCCA-10-2 7.49 7.21 42.14 10.21 7.04
DCCA-10-3 7.84 7.24 43.00 10.86 7.17
DCCAE-10-2 7.81 7.37 42.23 10.09 7.08
DCCAE-10-3 7.94 7.41 42.50 10.80 7.24
CDMM-10-2 8.03 14.11 42.14 11.18 8.04
CDMM-10-3 8.07 14.21 43.20 11.40 8.06

Experiments

Datasets and Configurations

CDMM can learn more discriminative multi-modal feature representation with self-
adaption networks. In this section, we will provide the empirical investigations and
performance comparison of CDMM. In particular, we demonstrate these phenomenon
on 5 real datasets, i.e., MNIST generates two modal data using the original MNIST
dataset [11]. As in [17], we randomly rotate the images and the resulting images are
used as modal v1 inputs. For each v1, we randomly select an image of the same identity
from the original dataset, add independent random noise to obtain the corresponding
modal v2 sample; AVLETTER contains 10 speakers speaking the letters A to Z at 3
times for each one. This dataset provides pre-extracted lip regions of 60× 80 pixels as
modal v1 and audio features (raw audio is not provided) Mel-Frequency Cepstrum Co-
efficient (MFCC) as modal v2; XRBM follows the setup of [17]. Inputs to multi-modal
feature learning are acoustic features as modal v1, and articulatory features concate-
nated over a 7-frame window around each frame as modal v2; WIKI [13] is a rich-
text web document dataset with images, which has 2,866 documents extracted from
Wikipedia as modal v1. Each document is accompanied by an image as modal v2. Text
is represented by TF-IDF feature with 7343-dimensional; FLICKR8K [6] consists of
8,000 images that are each paired with five different captions, similarly, we denote the
image as model v1 and text information as modal v2.

For WIKI and FLICKR8K datasets, 70% instances are chosen as training set, 20%
are chosen as validation set and the remains are test set as [18]. In other three datasets,
training and test splits are provided by [2, 8]. For DNN-based models, feature mappings
(fv1

, fv2) are implemented by networks of 2 or 3 hidden layers, each of 1,024 sigmoid
units, and a linear output layer of L units, we refer to a DNN-based model with an output
size of o and d layers (including the output) as *-o-d, i.e., CDMM-o-d, DCCA-o-d,
DCCAE-o-d. The two networks (fv1 , fv2) are pre-trained in a layerwise manner using
restricted Boltzmann machines [5], and SGD is used for optimization with minibatch
size as 800, learning rate and momentum tuned on the tuning set, a small weight decay
parameter of 10−4 is used for all layers.
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(b) t-SNE embedding of the third hidden layers of CDMM

Fig. 2: t-SNE embedding of the projected MNIST and noisy MNIST digits. Left represents the
projected original MNIST modality, and right denotes the noisy MNIST modality. Each sample
is denoted by a maker located at its coordinates of embedding and color coded by its label.

Comparing with CCA-based Multi-Modal Methods

CDMM is firstly compared to linear and kernerlized multi-modal CCA-based methods.
Since there are deep networks in CDMM, DNN-based multi-modal methods are also
compared in the experiments. In detail, the compared methods are listed as: Linear
CCA (CCA), Kernel CCA, DCCA, DCCAE.

Table 1 compares the total correlation on the test sets obtained for the 10 most
correlated dimensions with compared methods. It clearly reveals that on all datasets,
with the same number of layers, the CDMM total correlation is the highest. Besides,
note that CDMM also has exceeded other compared methods only with 2 layers on
most datasets except XRBM. Thus, CDMM can acquire more discriminative feature
representation with shallow deep network structures.

Investigation on Embedding of Different Layers

In order to explore the influence of the cascade structure, more experiments are con-
ducted. We qualitatively investigate the features by embedding the projected features in
2D using t-SNE of each pair homogeneous hidden layers, the resulting visualizations
are given in Fig. 2. Each sample is denoted by a marker located at its coordinates of
embedding and color coded by its label. Due to the page limits, we only list the noisy
MNIST digits dataset for verification. From the Fig.2, we can find that CDMM gives
more accurate embedding with the cascade structure from the initial layers, i.e., CDMM
pushed different digits far apart from the initial layers.
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Fig. 3: The correlation of different layers in training phase of Noisy MNIST digit dataset.

Empirical Investigation on Convergence

To investigate the convergence of CDMM iterations empirically. The objective function
value, i.e., the value of Eq. 1 of CDMM in each iteration of each homogeneous layers
are recorded. Due to the page limits, only results on noisy MNIST digits dataset are
plotted in Fig. 3. It clearly reveals that the correlation value between different modalities
increases as the iterations increase, and the performance is stable after several layers in
Fig. 3, i.e., the variations between the correlation values of second hidden layers and
third hidden layers less than the predefined threshold, which can be used to control the
layers self-adaptively.

Conclusion

Previous DNN-based multi-modal networks have been used for learning more discrim-
inative feature representations. However, these methods only consider the consensus
principle on output layers and always need predefined the network structures, i.e., num-
ber of layers, which lead complex deep network structures and high computation ex-
pense, while neglect considering the correlation between the homogeneous hidden lay-
ers of different deep modal structures. In this paper, we propose a novel Cascade Deep
Multi-Modal networks (CDMM). This method generates a deep multi-modal networks
with a cascade structure which fully maximizes the correlations between homogeneous
hidden layers of different modal networks, and can acquire representative networks
with shallow layers. Besides, the representational learning ability can be further en-
hanced by concatenating the raw features with each hidden layer output. And empirical
studies show that we can learn more discriminative features with shallow layers. How
to extend the scalability with improved performance is an interesting future work.

References

1. Akaho, S.: A kernel method for canonical correlation analysis pp. 263–269 (2007)
2. Andrew, G., Arora, R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In:

Proceedings of the 30th International Conference on Machine Learning. pp. 1247–1255.
Atlanta, GA (2013)



8

3. Arora, R., Mianjy, P., Marinov, T.V.: Stochastic optimization for multiview representation
learning using partial least squares. In: Proceedings of the 33rd International Conference on
Machine Learning. pp. 4847–4855. New York, NY (2016)

4. Hardoon, D.R., Szedmak, S.R., Shawe-Taylor, J.R.: Canonical Correlation Analysis: An
Overview with Application to Learning Methods. MIT Press (2004)

5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural net-
works. Science 313(5786), 504–507 (2006)

6. Hodosh, M., Young, P., Hockenmaier, J.: Framing Image Description as a Ranking Task:
Data, Models and Evaluation Metrics. JAIR 47, 853–899 (2013)

7. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3-4), 321–377 (1936)
8. Hu, D., Li, X., Lu, X.: Temporal multimodal learning in audiovisual speech recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
3574–3582. Las Vegas, NV (2016)

9. Kan, M., Shan, S., Chen, X.: Multi-view deep network for cross-view classification. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4847–
4855. Las Vegas, NV (2016)

10. Kang, G., Li, J., Tao, D.: Shakeout: A New Regularized Deep Neural Network Training
Scheme. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. pp. 1751–
1757. Phoenix, Arizona (2016)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition 86(11), 2278C2324 (1998)

12. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning.
In: Proceedings of the 28th International Conference on Machine Learning. pp. 689–696.
Bellevue, Washington (2011)

13. Rasiwasia, N., Pereira, J.C., Coviello, E., Doyle, G., Lanckriet, G.R., Levy, R., Vasconcelos,
N.: A New Approach to Cross-modal Multimedia Retrieval. In: Proceedings of the 18th
ACM international conference on Multimedia. pp. 251–260. Firenze, Italy (2010)

14. Rupnik, J., Shawe-Taylor, J.: Multi-view canonical correlation analysis. In: Slovenian KDD
Conference on Data Mining and Data Warehouses. pp. 1–4. Ljubljana, Yugoslavia (2010)

15. Shrivastava, A., Rastegari, M., Shekhar, S., Chellappa, R., Davis, L.S.: Class consistent
multi-modal fusion with binary features. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 2282–2291. Boston, MA (2015)

16. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning Deep Representations for Graph
Clustering. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. pp.
1293–1299. Qu—bec, Canada (2014)

17. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning.
In: Proceedings of the 32nd International Conference on Machine Learning. pp. 1083–1092.
Lille, France (2015)

18. Yang, Y., Zhan, D.C., Jiang, Y.: Deep learning for fixed model reuse. In: Proceedings of the
31st AAAI Conference on Artificial Intelligence. pp. 1033–1039. New York, NY (2017)

19. Zhou, Z.H., Feng, J.: Deep forest: Towards an alternative to deep neural networks. In: Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne,
Australia (2017)

20. Zhu, X., Huang, Z., Wu, X.: Multi-view visual classification via a mixed-norm regularizer.
In: Proceedings of the 17th Pacific-Asia Knowledge Discovery and Data Mining. pp. 520–
531. Gold Coast, Australia (2013)


